Cho hình chữ nhật \(ABCD\) có \(AB=12cm,\ BC=5cm\). Chứng minh rằng bốn điểm \(A,\ B,\ C,\ D\) thuộc cùng một đường tròn. Tính bán kính của đường tròn đó. 




Bạn đang xem: Bài 1 sgk toán 9 trang 99

Phương pháp giải - Xem chi tiết

*


+) Để chứng minh nhiều điểm cùng nằm trên một đường tròn, ta chứng minh các điểm này cùng cách đều một điểm.

+) Sử dụng tính chất của hình chữ nhật: \(ABCD\) là hình chữ nhật, hai đường chéo cắt nhau tại \(O\) thì ta có \(OA=OB=OC=OD=\dfrac{AC}{2}=\dfrac{BD}{2}\). 

+) Định lí Pytago: \(\Delta{ABC}\) vuông tại \(C\) thì \(BC^2=AB^2+AC^2.\)


Lời giải chi tiết

 

*

Gọi \(O\) là giao điểm hai đường chéo của hình chữ nhật, ta có \(OA = OB = OC = OD \) (tính chất) nên bốn điểm này cùng thuộc đường tròn tâm \(O\), bán kính \(R=OA\).

Xét tam giác \(ABC\) vuông tại \(B\), áp dụng định lí Pytago, ta có:

\(AC^{2}=AB^{2}+BC^{2}=12^{2}+5^{2}=169\)

\(\Rightarrow AC=\sqrt{169}=13\,cm\) 

\(\Rightarrow R=OA=\dfrac{13}{2}=6,5\,cm\)

Vậy bán kính của đường tròn là: \(R=6,5\,cm.\)


*
Bình luận
*
Chia sẻ
Bài tiếp theo
*

*
*
*
*
*
*
*
*

*
*

Vấn đề em gặp phải là gì ?

Sai chính tả Giải khó hiểu Giải sai Lỗi khác Hãy viết chi tiết giúp edingsport.net




Xem thêm: Giải Bài Tập Ôn Cuối Năm Lớp 7 Bài Tập Ôn Cuối Năm, Giải Bài Tập Sgk Toán Lớp 7 Bài: Phần Đại Số

Cảm ơn bạn đã sử dụng edingsport.net. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?

Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!


Đăng ký để nhận lời giải hay và tài liệu miễn phí

Cho phép edingsport.net gửi các thông báo đến bạn để nhận được các lời giải hay cũng như tài liệu miễn phí.